Контакты

Виды химических реакторов. Реакторы идеального смешения и идеального вытеснения

: … довольно банально, но тем не менее я так и не нашел инфу в удобоваримой форме — как НАЧИНАЕТ работать атомный реактор. Про принцип и устройство работы всё уже 300 раз разжеванно и понятно, но вот то как получают топливо и из чего и почему оно не столь опасно пока не в реакторе и почему не вступает в реакцию до погружения в реактор! — ведь оно разогревается только внутри, тем не менее перед загрузкой твлы холодные и всё нормально, так что-же служит причиной нагрева элементов не совсем ясно, как на них воздействуют и так далее, желательно не по научному).

Сложно конечно такую тему оформить не «по научному», но попробую. Давайте сначала разберемся, что из себя представляют эти самые ТВЭЛы.

Ядерное топливо представляет собой таблетки черного цвета диаметром около 1 см. и высотой около 1.5 см. В них содержится 2 % двуокиси урана 235, и 98 % урана 238, 236, 239. Во всех случаях при любом количестве ядерного топлива ядерный взрыв развиться не может, т.к.для лавинообразной стремительной реакции деления, характерной для ядерного взрыва требуется концентрация урана 235 более 60%.

Двести таблеток ядерного топлива загружаются в трубку, изготовленную из металла цирконий. Длина этой трубки 3.5м. диаметр 1.35 см. Эта трубка называется ТВЭЛ- тепловыделяющий элемент. 36 ТВЭЛов собираются в кассету (другое название «сборка»).

Устройство твэла реактора РБМК: 1 - заглушка; 2 - таблетки диоксида урана; 3 - оболочка из циркония; 4 - пружина; 5 - втулка; 6 - наконечник.

Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер, для преодоления которого микрочастица должна получить извне какое-то количество энергии - энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога, ограничивающего течение процесса. В случае молекулярных превращений, то есть химических реакций, такое повышение обычно составляет сотни градусов Кельвина, в случае же ядерных реакций - это минимум 107 K из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез).

Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счёт неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются, как продукты экзоэнергетической реакции.

Для управления и защиты ядерного реактора используются регулирующие стержни, которые можно перемещать по всей высоте активной зоны. Стержни изготавливаются из веществ, сильно поглощающих нейтроны – например, из бора или кадмия. При глубоком введении стержней цепная реакция становится невозможной, поскольку нейтроны сильно поглощаются и выводятся из зоны реакции.

Перемещение стержней производится дистанционно с пульта управления. При небольшом перемещении стержней цепной процесс будет либо развиваться, либо затухать. Таким способом регулируется мощность реактора.

Ленинградская АЭС, Реактор РБМК

Начало работы реактора:

В начальный момент времени после первой загрузки топливом, цепная реакция деления в реакторе отсутствует, реактор находится в подкритическом состоянии. Температура теплоносителя значительно меньше рабочей.

Как мы уже тут упоминали, для начала цепной реакции делящийся материал должен образовать критическую массу, - достаточное количество спонтанно расщепляющегося вещества в достаточно небольшом пространстве, условие, при котором число нейтронов, выделяющихся при делении ядер должно быть больше числа поглощенных нейтронов. Это можно сделать, повысив содержание урана-235 (количество загруженных ТВЭЛОВ), либо замедлив скорость нейтронов, чтобы они не пролетали мимо ядер урана-235.

Вывод реактора на мощность осуществляется в несколько этапов. С помощью органов регулирования реактивности реактор переводится в надкритическое состояние Кэф>1 и происходит рост мощности реактора до уровня 1-2 % от номинальной. На этом этапе производится разогрев реактора до рабочих параметров теплоносителя причем скорость разогрева ограничена. В процессе разогрева органы регулирования поддерживают мощность на постоянном уровне. Затем производится пуск циркуляционных насосов и вводится в действие система отвода тепла. После этого мощность реактора можно повышать до любого уровня в интервале от 2 — 100 % номинальной мощности.

При разогреве реактора реактивность меняется, в виду изменения температуры и плотности материалов активной зоны. Иногда при разогреве меняется взаимное положение активной зоны и органов регулирования, которые входят в активную зону или выходят из нее, вызывая эффект реактивности при отсутствии активного перемещения органов регулирования.

Регулирование твердыми, движущимися поглощающими элементами

Для оперативного изменения реактивности в подавляющем большинстве случаев используется твердые подвижные поглотители. В реакторе РБМК управляющие стержни содержат втулки из карбида бора заключенные в трубку из алюминиевого сплава диаметром 50 или 70 мм. Каждый регулирующий стержень помещен в отдельный канал и охлаждается водой контура СУЗ (система управления и защиты) при средней температуре 50 ° С. По своему назначению стержни делятся на стержни АЗ (аварийной зашиты), в РБМК таких стержней 24 штуки. Стержни автоматического регулирования — 12 штук, Стержни локального автоматического регулирования — 12 штук, стержни ручного регулирования -131, и 32 укороченных стержня поглотителя (УСП). Всего имеется 211 стержней. Причем укороченные стержни вводятся в АЗ с низу остальные с верху.

Реактор ВВЭР 1000. 1 - привод СУЗ; 2 - крышка реактора; 3 - корпус реактора; 4 - блок защитных труб (БЗТ); 5 - шахта; 6 - выгородка активной зоны; 7 - топливные сборки (ТВС) и регулирующие стержни;

Выгорающие поглощающие элементы.

Для компенсации избыточной реактивности после загрузки свежего топлива, часто используют выгорающие поглотители. Принцип работы которых состоит в том, что они, подобно топливу, после захвата нейтрона в дальнейшем перестают поглощать нейтроны (выгорают). Причем скорости убыли в результате поглощения нейтронов, ядер поглотителей, меньше или равна скорости убыли, в результате деления, ядер топлива. Если мы загружаем в АЗ реактора топливо рассчитанное на работу в течении года, то очевидно, что количество ядер делящегося топлива в начале работы будет больше чем в конце, и мы должны скомпенсировать избыточную реактивность поместив в АЗ поглотители. Если для этой цели использовать регулирующие стержни, то мы должны постоянно перемещать их, по мере того как количество ядер топлива уменьшается. Использование выгорающих поглотителей позволяет уменьшить использование движущихся стержней. В настоящее время выгорающие поглотители часто помешают непосредственно в топливные таблетки, при их изготовлении.

Жидкостное регулирование реактивности.

Такое регулирование применяется, в частности, при работе реактора типа ВВЭР в теплоноситель вводится борная кислота Н3ВО3, содержащая ядра 10В поглощающие нейтроны. Изменяя концентрацию борной кислоты в тракте теплоносителя мы тем самым изменяем реактивность в АЗ. В начальный период работы реактора когда ядер топлива много, концентрация кислоты максимальна. По мере выгорания топлива концентрация кислоты снижается.

Механизм цепной реакции

Ядерный реактор может работать с заданной мощностью в течение длительного времени только в том случае, если в начале работы имеет запас реактивности. Исключение составляют подкритические реакторы с внешним источником тепловых нейтронов. Освобождение связанной реактивности по мере её снижения в силу естественных причин обеспечивает поддержание критического состояния реактора в каждый момент его работы. Первоначальный запас реактивности создается путём постройки активной зоны с размерами, значительно превосходящими критические. Чтобы реактор не становился надкритичным, одновременно искусственно снижается k0 размножающей среды. Это достигается введением в активную зону веществ-поглотителей нейтронов, которые могут удаляться из активной зоны в последующем. Так же как и в элементах регулирования цепной реакции, вещества-поглотители входят в состав материала стержней того или иного поперечного сечения, перемещающихся по соответствующим каналам в активной зоне. Но если для регулирования достаточно одного-двух или нескольких стержней, то для компенсации начального избытка реактивности число стержней может достигать сотни. Эти стержни называются компенсирующими. Регулирующие и компенсирующие стержни не обязательно представляют собой различные элементы по конструктивному оформлению. Некоторое число компенсирующих стержней может быть стержнями регулирования, однако функции тех и других отличаются. Регулирующие стержни предназначены для поддержания критического состояния в любой момент времени, для остановки, пуска реактора, перехода с одного уровня мощности на другой. Все эти операции требуют малых изменений реактивности. Компенсирующие стержни постепенно выводятся из активной зоны реактора, обеспечивая критическое состояние в течение всего времени его работы.

Иногда стержни управления делаются не из материалов-поглотителей, а из делящегося вещества или материала-рассеивателя. В тепловых реакторах - это преимущественно поглотители нейтронов, эффективных же поглотителей быстрых нейтронов нет. Такие поглотители, как кадмий, гафний и другие, сильно поглощают лишь тепловые нейтроны благодаря близости первого резонанса к тепловой области, а за пределами последней ничем не отличаются от других веществ по своим поглощающим свойствам. Исключение составляет бор, сечение поглощения нейтронов которого снижается с энергией значительно медленнее, чем у указанных веществ, по закону l / v. Поэтому бор поглощает быстрые нейтроны хотя и слабо, но несколько лучше других веществ. Материалом-поглотителем в реакторе на быстрых нейтронах может служить только бор, по возможности обогащенный изотопом 10В. Помимо бора в реакторах на быстрых нейтронах для стержней управления применяются и делящиеся материалы. Компенсирующий стержень из делящегося материала выполняет ту же функцию, что и стержень-поглотитель нейтронов: увеличивает реактивность реактора при естественном её снижении. Однако, в отличие от поглотителя, такой стержень в начале работы реактора находится за пределами активной зоны, а затем вводится в активную зону.

Из материалов-рассеивателей в быстрых реакторах употребляется никель, имеющий сечение рассеяния быстрых нейтронов несколько больше сечений других веществ. Стержни-рассеиватели располагаются по периферии активной зоны и их погружение в соответствующий канал вызывает снижение утечек нейтронов из активной зоны и, следовательно, возрастание реактивности. В некоторых специальных случаях целям управления цепной реакцией служат подвижные части отражателей нейтронов, при перемещении изменяющие утечки нейтронов из активной зоны. Регулирующие, компенсирующие и аварийные стержни совместно со всем оборудованием, обеспечивающим их нормальное функционирование, образуют систему управления и защиты реактора (СУЗ).

Аварийная защита:

Аварийная защита ядерного реактора – совокупность устройств, предназначенная для быстрого прекращения цепной ядерной реакции в активной зоне реактора.

Активная аварийная защита автоматически срабатывает при достижении одним из параметров ядерного реактора значения, которое может привести к аварии. В качестве таких параметров могут выступать: температура, давление и расход теплоносителя, уровень и скорость увеличения мощности.

Исполнительными элементами аварийной защиты являются, в большинстве случаев, стержни с веществом, хорошо поглощающим нейтроны (бором или кадмием). Иногда для остановки реактора жидкий поглотитель впрыскивают в контур теплоносителя.

Дополнительно к активной защите, многие современные проекты включают также элементы пассивной защиты. Например, современные варианты реакторов ВВЭР включают «Систему аварийного охлаждения активной зоны» (САОЗ) – специальные баки с борной кислотой, находящиеся над реактором. В случае максимальной проектной аварии (разрыва первого контура охлаждения реактора), содержимое этих баков самотеком оказываются внутри активной зоны реактора и цепная ядерная реакция гасится большим количеством борсодержащего вещества, хорошо поглощающего нейтроны.

Согласно «Правилам ядерной безопасности реакторных установок атомных станций», по крайней мере одна из предусмотренных систем остановки реактора должна выполнять функцию аварийной защиты (АЗ). Аварийная защита должна иметь не менее двух независимых групп рабочих органов. По сигналу АЗ рабочие органы АЗ должны приводиться в действие из любых рабочих или промежуточных положений.

Аппаратура АЗ должна состоять минимум из двух независимых комплектов.

Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы в диапазоне изменения плотности нейтронного потока от 7% до 120% номинального обеспечивалась защита:

1. По плотности нейтронного потока – не менее чем тремя независимыми каналами;
2. По скорости нарастания плотности нейтронного потока – не менее чем тремя независимыми каналами.

Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы во всем диапазоне изменения технологических параметров, установленном в проекте реакторной установки (РУ), обеспечивалась аварийная защита не менее чем тремя независимыми каналами по каждому технологическому параметру, по которому необходимо осуществлять защиту.

Управляющие команды каждого комплекта для исполнительных механизмов АЗ должны передаваться минимум по двум каналам. При выводе из работы одного канала в одном из комплектов аппаратуры АЗ без вывода данного комплекта из работы для этого канала должен автоматически формироваться аварийный сигнал.

Срабатывание аварийной защиты должно происходить как минимум в следующих случаях:

1. При достижении уставки АЗ по плотности нейтронного потока.
2. При достижении уставки АЗ по скорости нарастания плотности нейтронного потока.
3. При исчезновении напряжения в любом не выведенном из работы комплекте аппаратуры АЗ и шинах электропитания СУЗ.
4. При отказе любых двух из трех каналов защиты по плотности нейтронного потока или по скорости нарастания нейтронного потока в любом не выведенном из работы комплекте аппаратуры АЗ.
5. При достижении уставок АЗ технологическими параметрами, по которым необходимо осуществлять защиту.
6. При инициировании срабатывания АЗ от ключа с блочного пункта управления (БПУ) или резервного пункта управления (РПУ).

Может кто то сможет еще менее по научному объяснить кратко как начинает работу энергоблок АЭС? :-)

Вспомните такую тему, как и Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Реакторы служат для ограничения токов КЗ в мощных электроустановках, а также позволяют поддерживать на шинах определенный уровень напряжения при повреждениях за реакторами.

Основная область применения реакторов -- электрические сети напряжением 6--10 кВ. Иногда токоограничивающие реакторы используются в установках 35 кВ и выше, а также при напряжении ниже 1000 В.

Реактор представляет собой индуктивную катушку, не имеющую сердечника из магнитного материала. Благодаря этому он обладает постоянным индуктивным сопротивлением, не зависящим от протекающего тока.

Схемы включения реакторов представлены на рис. 3.48.

Для мощных и ответственных линий может применяться индивидуальное реактирование (рис. 1.3, а). Когда через реактор питается группа линий (например, в системе собственных нужд), его называют групповым (рис. 1.3, 6). Реактор, включаемый между секциями распределительных устройств, называют секционным реактором (рис. 1.3, в).

Рис. 1.3. Схемы включения реакторов: а - индивидуальное реактирование; б - групповой реактор;

в - секционный реактор

Основным параметром реактора является его индуктивное сопротивление

x р = щL, Ом. В некоторых каталогах приводится

x р % = (x р v3I ном? U ном)?100

где I ном -- номинальный ток реактора, А; U ном -- номинальное напряжение реактора, В.

Поддержание более высокого уровня остаточного напряжения благоприятно сказывается на потребителях электроэнергии, питающихся от того же источника, что и поврежденная цепь. С учетом этого в режиме КЗ целесообразно иметь возможно большее значение индуктивного сопротивления х р.

Однако по условиям работы электроустановки в нормальном режиме чрезмерно увеличивать сопротивление реактора нельзя из-за одновременного увеличения потери напряжения в реакторе при протекании рабочего пока. Особенно это заметно при использовании реакторов в качестве групповых и индивидуальных. Схемы реактированной линии и диаграммы, характеризующие распределения напряжений в нормальном режиме работы, приведены на рис. 3.50. На векторной диаграмме изображены: 1 - фазное напряжение перед реактором, р - фазное напряжение после реактора и - ток, проходящий по цепи.

Рис. 1.4. Ограничение тока КЗ и поддержание напряжения на шинах при помощи реакторов: напряжение на шинах при отсутствии (а) и наличии (б) реактора

Угол ц соответствует сдвигу фаз между напряжением после реактора и током. Угол Ш между векторами 1 и p представляет собой дополнительный сдвиг фаз, вызванный индуктивным сопротивлением реактора. Если не учитывать активное сопротивление реактора, отрезок АС предмет собой падение напряжения в индуктивном сопротивлении реактора.

Рис1.5.

Рис 1.6. Нормальный режим работы цепи с реактором: а - схема цепи; б - диаграмма; в - векторная диаграмма

Рис.1.7. Фаза реактора серии РБ: 1 - обмотка реактора; 2 - бетонные колонны; 3 - опорные изоляторы

Алгебраическая разность напряжений до реактора и после него, т.е. отрезок AB, соответствует потере напряжения в реакторе. Опустив из точки C перпендикуляр на вектор ОВ и пренебрегая незначительным отрезком ВВ 1 , можно считать потерей напряжения отрезок АВ 1 . из треугольника АСВ 1 нетрудно вывести приближенное выражение для определения потери напряжения в реакторе. Потеря напряжения в реакторе при протекании тока I и заданном значении cos ц определяется из выражения

U p %=x p (v3Isin ц? U ном)100

где U ном - номинальное напряжение установки, где используется реактор.

Допустимая потеря напряжения в реакторе обычно не превышает 1,5 - 2%.

Значительная потеря напряжения в нормальном режиме работы цепи не позволяет устанавливать индивидуальные и групповые реакторы большого сопротивления. Поэтому для случаев, когда требуются значительные ограничения тока КЗ, разрабатывают специальные более сложные устройства, так называемые БТУ - безынерционные токоограничивающие устройства.

На рис. 1.5 приведена схема простейшего БТУ, в состав которого входят: реактор с большим индуктивным сопротивлением, емкость, настроенная в резонанс с реактором так, чтобы результирующее сопротивление БТУ в нормальном режиме приближалось к минимально возможному. Параллельно емкости включена индуктивность в нормальном режиме с ненасыщенным ферромагнитным сердечником. Индуктивность в нормальном режиме имеет большое сопротивление, и ток через нее мал. При КЗ ток через емкость возрастает, увеличивается падение напряжения на ней, а следовательно, и напряжение на индуктивности. Последняя переходит в режим насыщения сердечника, резко уменьшает свое сопротивление и закорачивает емкость. Ток КЗ ограничивается нескомпенсированным в данном случае реактором. В стадии разработки находятся БТУ различных типов.

Ограничений по потере напряжения в нормальном режиме работы нет в случае секционного реактора, поэтому его сопротивление может быть взято существенно большим, чем в случае индивидуального или группового реактора. На случай режимов, отличных от нормального, может быть применено временное шунтирование реактора.

В настоящее время наибольшее распространение получили бетонные реакторы с алюминиевой обмоткой марки РБ.

Алюминиевые проводники обмотки реакторов покрываются несколькими слоями кабельной бумаги и хлопчатобумажной оплеткой. Обмотка наматывается на специальный каркас, а затем в определенных местах заливается бетоном. Бетон образует колонны, которые закрепляют витки обмотки, предотвращая их смещение под действием собственной массы и электродинамических усилий при протекании токов КЗ. Изоляция реактора от заземленных конструкций, а при вертикальной установке и от соседних фаз осуществляется при помощи опорных фарфоровых изоляторов (рис. 1.7).

Бетонные реакторы выпускаются отечественной промышленностью на номинальные токи до 4000 A и изготавливаются для вертикальной, горизонтальной и ступенчатой установки (рис. 1.8).

В обмотках реактора при протекании по ним тока имеют место потери активной мощности, составляющие обычно 0,1 - 0,2% проходной мощности. При номинальном токе более 1000 A эти потери настолько значительны, что требуется выполнять искусственное охлаждение реактора (вентиляция камер).


Рис.1.8. Способы монтажа реакторов: а - вертикальный монтаж; б - ступенчатый; в - горизонтальная установка фаз

Реакторы служат для ограничения токов КЗ в мощных электро­установках, а также позволяют поддерживать на шинах определенный уровень напряжения при повреждениях за реакторами.

Основная область применения реакторов - электрические сети напряжением 6¾10 кв. Иногда токоограничивающие реакторы используются в установках 35 кВ и выше, а также при напряжении ниже 1000 В.

Рис. 3.43. Нормальный режим работы цепи с реактором:

а- схема цепи; б - диаграмма напряжений: в - векторная диаграмма

Схемы реактированной линии и диаграммы, характеризующие распределения напряжений в нормальном режиме работы, приведены на рис. 3.43.

На векторной диаграмме изображены: U 1 - фазное напряжение перед реактором, U р - фазное напряжение после реактора и I - ток, проходящий по цепи. Угол j соответствует сдвигу фаз между напряжением после реактора и током. Угол y между векторами U 1 и U 2 представляет собой допол­нительный сдвиг фаз, вызванный индуктивным сопротивлением реактора. Если не учитывать активное сопротивление реактора, отрезок АС пред­ставляет собой падение напряжения в индуктивном сопротивлении реактора.

Реактор (рис. 3.44) представляет собой индуктивную катушку, не имеющую сердечника из магнитного материала. Благодаря этому он обладает постоянным индуктивным сопротивлением, не зависящим от протекающего тока.

Рис. 3.44. Фаза реактора серии РБ:

1 – обмотка реактора, 2 – бетонные колонны,

3 – опорные изоляторы

Для мощных и ответственных линий может применяться индивидуальное реактирование.

В электроустановках находят широкое применение сдвоенные бетонные реакторы с алюминиевой обмоткой для внутренней и наружной установки типа РБС.

Недостатком реакторов является наличие в них потерь мощности 0,15-0,4 % от проходящей через реактор и напряжения

, (4.30)

где х р %, I н - паспортные данные реактора; I , sinj - параметры режима питающейся через реактор установки.


Рис. 3.8. Места установки реакторов: а - между секциями сборных шин электростанций; б - на отдельных отходящих линиях; в - на секции распределительного устройства подстанции (групповой реактор)


Для снижения потерь напряжения в нормальных режимах в качестве групповых реакторов применяются, как правило, сдвоенные реакторы. Сдвоенный реактор (рис. 4.9) отличается от обычного наличием вывода от середины обмотки. Обе ветви сдвоенного реактора располагаются одна над другой при одинаковом направлении витков обмотки.

Рис. 4.9. Схема сдвоенного реактора


Индуктивное сопротивление каждой ветви реактора при отсутствии тока в другой ветви



Определим индуктивное сопротивление ветви сдвоенного реактора при протекании по его ветвям одинаковых токов нагрузки.

Падение напряжения в ветви реактора составит:

Таким образом, при протекании токов в обеих ветвях

. (4.33)

Обычно k св = 0,4¸0,5.

При КЗ за одной ветвью и отключении другой ветви

. (4.34)

При подпитке КЗ со стороны второй ветви ток в последней меняет направление, изменит знак также и взаимная индукция между обмотками, а следовательно, сопротивление реактора увеличится:

Реакторы выбирают по номинальным напряжению, току и индуктивному сопротивлению.

Номинальное напряжение выбирают в соответствии с номинальным напряжением установки. При этом предполагается, что реакторы должны длительно выдерживать максимальные рабочие напряжения, которые могут иметь место в процессе эксплуатации. Допускается исполь­зование реакторов в электроустановках с номинальным напряжением, меньшим номинального напряжения реакторов.

Номинальный ток реактора (ветви сдвоенного реактора) не должен быть меньше максимального длительного тока нагрузки цепи, в которую он включен:

I ном ³ I max

Для шинных (секционных) реакторов номинальный ток подбирается в зависимости от схемы их включения.

Индуктивное сопротивление реактора определяют, исходя из условий ограничения тока КЗ до заданного уровня. В большинстве случаев уровень ограничения тока КЗ определяется по коммутационной способности выключателей, намечаемых к установке или установленных в данной точке сети.

Как правило, первоначально известно начальное значение периоди­ческого тока КЗ I п.о. , котороеспомощью реактора необходимо уменьшить до требуемого уровня.

Рассмотрим порядок определения сопротивления индивидуального реактора. Требуется ограничить ток КЗ так, чтобы можно было в данной цепи установить выключатель с номинальным током отключения I ном.отк. (действующее значение периодической составляющей тока отключения).

По значению I ном.отк определяется начальное значение периодической составляющей тока КЗ, при котором обеспечивается коммутационная способность выключателя. Для упрощения обычно принимают I п.о.треб = I ном.отк.

Результирующее сопротивление, Ом, цепи КЗ до установки реактора можно определить по выражению

Требуемое сопротивление цепи КЗ для обеспечения I п.о.треб.

Разность полученных значений сопротивлений даст требуемое сопротивление реактора

.

Сопротивление секционного реактора выбирается из условий наиболее
эффективного ограничения токов КЗ при замыкании на одной секции. Обычно оно принимается таким, что падение напряжения на реакторе при протекании по нему номинального тока достигает 0,08¾0,12 номи­нального напряжения, т. е.

.

В нормальных же условиях длительной работы ток и потери напря­жения в секционных реакторах значительно ниже.

Фактическое значение тока при КЗ за реактором определяется сле­дующим образом. Вычисляется значение результирующего сопротивления цепи КЗ с учетом реактора

,

а затем определяется начальное значение периодической составляющей тока КЗ:

Аналогично выбирается сопротивление групповых и сдвоенных реакторов. В последнем случае определяют сопротивление ветви сдвоенного реактора X р = X в.

Выбранный реактор следует проверить на электродинамическую и тер­мическую стойкость при протекании через него тока КЗ.

Электродинамическая стойкость реактора гарантируется при соблюде­нии следующего условия:

Термическая стойкость реактора гарантируется при соблюде­нии следующего условия:

Для установки в нейтрали силовых трансформаторов и присоединениях отходящих линий на напряжение 6¾35кВ рекомендуются к установке сухие токоограничивающие реакторы с полимерной изоляцией.

Реактор -- это катушка с постоянным индуктивным сопротивлением, включенная в цепь последовательно.В большинстве конструкций токоограничивающие реакторы не имеют ферромагнитных сердечников. В нормальном режиме на реакторе наблюдается падение напряжения порядка 3--4 %, что вполне допустимо. В случае короткого замыкания бомльшая часть напряжения приходится на реактор. Значение максимального ударного тока короткого замыкания рассчитывается по формуле:

где I H -- номинальный ток сети, Xp -- реактивное сопротивление реактора.

Соответственно, чем выше будет реактивное сопротивление, тем меньше будет значение максимального ударного тока в сети.

Реактивность прямо пропорциональна индуктивному сопротивлению катушки. При больших токах у катушек со стальными сердечниками происходит насыщение сердечника, что резко снижает реактивность, и, как следствие, реактор теряет свои токоограничивающие свойства. По этой причине реакторы выполняют без стальных сердечников, несмотря на то, что при этом, для поддержания такого же значения индуктивности, их приходится делать больших размеров и массы. В случае если в линии электропередач 0.4-110 кВ имеются устройства передачи данных по технологии PLC, то реактор будет гасить эти частоты.

Виды реакторов

Токоограничивающие реакторы подразделяются:

  • · по месту установки: наружного применения и внутреннего;
  • · по напряжению: среднего (3?--35 кВ) и высокого (110?--500 кВ);
  • · по конструктивному исполнению: на бетонные, сухие, масляные и броневые;
  • · по расположению фаз: вертикальное, горизонтальное и ступенчатое;
  • · по исполнению обмоток: одинарные и сдвоенные;
  • · по функциональному назначению: фидерные, фидерные групповые и межсекционные.

Бетонные реакторы

Получили распространение на внутренней установке на напряжения сетей до 35 кВ включительно. Бетонный реактор представляет собой концентрически расположенные витки изолированного многожильного провода, залитого в радиально расположенные бетонные колонки. При коротких замыканиях обмотки и детали испытывают значительные механические напряжения, обусловленные электродинамическими усилиями, поэтому при их изготовлении используется бетон с высокой прочностью. Все металлические детали реактора изготавливаются из немагнитных материалов. В случае больших токов применяют искусственное охлаждение.

Фазные катушки реактора располагают так, что при собранном реакторе поля катушек расположены встречно, что необходимо для преодоления продольных динамических усилий при коротком замыкании. Бетонные реакторы могут выполняться как естественно-воздушного так и воздушно-принудительного охлаждения (для больших номинальных мощностей), т.н. "дутьё" (добавляется буква "Д" в маркировке).

Сейчас (2014 г.) бетонные реакторы считаются морально устаревшими и вытесняются сухими реакторами.

Масляные реакторы

Применяются в сетях с напряжением выше 35 кВ. Масляный реактор состоит из обмоток медных проводников, изолированных кабельной бумагой, которые укладываются на изоляционные цилиндры и заливаются маслом или иным электротехническим диэлектриком. Жидкость служит одновременно и изолирующей и охлаждающей средой. Для снижения нагрева стенок бака от переменного поля катушек реактора применяют электромагнитные экраны и магнитные шунты.

Электромагнитный экран представляет собой расположенные концентрично относительно обмотки реактора короткозамкнутые медные или алюминиевые витки вокруг стенок бака. Экранирование происходит за счет того, что в этих витках индуцируется электромагнитное поле, направленное встречно и компенсирующее основное поле.

Магнитный шунт -- это пакеты листовой стали, расположенные внутри бака около стенок, которые создают искусственный магнитопровод с магнитным сопротивлением, меньшее, чем у стенок бака, что заставляет основной магнитный поток реактора замыкаться по нему, а не через стенки бака.

Для предотвращения взрывов, связанных с перегревом масла в баке, согласно ПУЭ, все реакторы на напряжение 500 кВ и выше должны быть оборудованы газовой защитой.

Сухие реакторы

Сухие реакторы относятся к новому направлению в конструировании токоограничивающих реакторов и применяются в сетях с номинальным напряжением до 220 кВ. В одном из вариантов конструкции сухого реактора обмотки выполняются в виде кабелей (обычно прямоугольного сечения для уменьшения габаритов, повышения механической прочности и срок службы) с кремнеорганической изоляцией, намотанных на диэлектрический каркас. Преимуществом применения кремнеорганической изоляции является большая термостойкость, устойчивость к электродинамическим нагрузкам, эластичность, герметичность, неизменность диэлектрических и механических свойств при длительном времени эксплуатации, что в свою очередь уменьшает потери энергии на вихревые токи и нагрев, и позволяет снизить добавочные потери на вихревые токи от 20 до 40%. В другой конструкции реакторов провод обмотки изолируется полиамидной плёнкой, а затем двумя слоями стеклянных нитей с проклейкой и пропиткой их кремнеорганичексим лаком и последующим запеканием, что соответствует классу нагревостойкости Н (рабочая температура до 180 °С); прессовка и стяжка бандажами обмоток делает их устойчивыми к механическим наряжениям при ударном токе.

Броневые реакторы

Несмотря на тенденцию изготавливать токоограничивающие реакторы без ферромагнитного магнитопровода (вследствие опасности насыщения магнитной системы при токе к.з.и как следствие-резким падением токоогрничивающих свойств) некоторые электротехнические предприятия России (ООО "КПМ", г.Санкт-Петербург; СВЭЛ, г.Екатеринбург) выпускают реакторы с сердечниками броневой конструкции из электротехнической стали. Преимуществом данного типа токоограничивающих реакторов является меньшие массо-габаритные показатели и стоимость (за счёт уменьшения в конструкции доли цветных металлов). Недостаток: возможность потери токоограничивающих свойств при ударных токах, больших номинального для данного реактора, что в свою очередь требует тщательного расчёта токов к.з. в сети и выбора броневого реактора таким образом, чтобы в любом режиме сети ударный ток к.з. не превышал номинального.

Сдвоенные реакторы

Сдвоенные реакторы применяются для уменьшения падения напряжения в нормальном режиме, для чего каждая фаза состоит из двух обмоток с сильной магнитной связью, включаемых встречно, к каждой из которых подключается примерно одинаковая нагрузка, в результате чего индуктивность уменьшается (зависит от остаточного разностного магнитного поля). При к.з. в цепи одной из обмоток поле резко возрастает, индуктивность увеличивается и происходит процесс токоограничения.

Межсекционные и фидерные реакторы

Межсекционные реакторы включаются между секциями для ограничения токов и поддержания напряжения в одной из секций, при к.з. в другой секции. Фидерные и фидерные групповые устанавливаются на отходящих фидерах (групповые являются общими для несколько фидеров).

Немного теории

Автоматические выключатели, осуществляя отключение цепей при коротких замыканиях, не защищают эти цепи от разрушающего действия электродинамических сил. В современных мощных сетях токи короткого замыкания, а следовательно, и электродинамические силы бывают настолько велики, что часто не представляется возможным выполнить установки с требуемой электродинамической и термической стойкостью. С целью ограничения ударного тока короткого замыкания (КЗ) в мощных сетях применяются Токоограничивающие реакторы, которые устанавливаются на отходящих фидерах (1 и 2) (рис. 3-1) и между секциями сборных шин (3). Кроме ограничения тока КЗ реакторы одновременно во время короткого замыкания поддерживают напряжение на питающих шинах на некотором определенном уровне.

Реактор представляет собой катушку с постоянным индуктивным сопротивлением х = щL. Одним из основных параметров является его индуктивное сопротивление Хр, равное отношению падения напряжения на реакторе Uр при протекании по нему номинального тока к фазному напряжению Uф. Индуктивное сопротивление выражается в процентах. Если пренебречь омическим сопротивлением реактора, то

Индуктивное сопротивление фидерных реакторов выбирается обычно 6 -- 8 %, а секционных 8-12%.

Следует отметить, что при номинальном режиме потери напряжения на реакторе?Uф не равны численно падению напряжения Up на нем (рис. 3 -2, а и б) и существенно зависят от величины cosц(?Uф > 0 при cosц =1; ?Uф = Uр при cosц = 0; ?Uф?0,5Uр при cosц = 0,8). Таким образом, при номинальном режиме обеспечивается допустимое (3--4%) отклонение напряжения у потребителей. При коротком замыкании cosц>0 и большая часть напряжения приходится на реактор (рис. 3-2,6), вследствие чего на сборных шинах поддерживается сравнительно высокое остаточное напряжение, значение которого зависит от соотношения сопротивлений сети до реактора и самого реактора. Если пренебречь активным сопротивлением сети и реактора, то кратность установившегося тока короткого замыкания будет

Ударный ток короткого замыкания при расчете реакторов берется равным

Для поддержания постоянства индуктивного сопротивления токоограничивающие реакторы выполняются без стальных сердечников. При этом они получаются больших размеров и массы. Реакторы со стальными сердечниками при равной индуктивности имели бы меньшие размеры. Однако у них при больших токах сердечники насыщаются, индуктивное сопротивление таких реакторов резко снижается и реакторы теряют свои токоограничивающие свойства как раз в тот момент, когда они необходимы. Ввиду этого реакторы со стальными сердечниками не получили распространения.

Индуктивность L реакторов может быть рассчитана по следующим формулам (размеры даны в сантиметрах, L -- в миллигенри):

1) для реактора с соотношением геометрических размеров подобно рис. 3-3, а и числом витков w

где б = 3/4 при 0,3 ? D/?1 и б = 1/2 при 1 ? D/?3;

2) для реактора, у которого h/D >> b/D

где к1 = f(h/D)

3) для реактора, у которого b/D >> h/D

где к2 = f(b/D)

Получили распространение сдвоенные реакторы 4. Такой реактор питает два фидера. Катушки каждой фазы включены так, что создаваемые ими потоки направлены встречно. При номинальном токе индуктивность (следовательно, и потери напряжения) каждой из катушек снижается из-за размагничивающего действия другой. При равных токах и коэффициенте связи, стремящемся к единице, индуктивность реактора стремилась бы к нулю. Обычно коэффициент связи равен 0,4--0,6. Соответственно уменьшаются и потери напряжения. При коротком замыкании на одном из фидеров размагничивающим действием катушки другого фидера, обтекаемой номинальным током, можно пренебречь. Индуктивность и токоограничивающее действие сдвоенного реактора получаются такими же, как у одинарного.

На напряжения до 35 кВ и для внутренней установки почти исключительное распространение получили бетонные реакторы. Бетонный реактор выполняется в виде концентрически расположенных витков 1 из специального круглого изолированного многожильного провода, залитых в радиально расположенные бетонные колонки 2. Благодаря своей эластичности провод демпфирует термические и динамические усилия и тем самым частично снимает напряжения с бетона. Обмотки реактора на большие токи выполняются из нескольких параллельных проводов с транспозицией этих параллелей, обеспечивающей равномерное распределение токов.

Число колонок определяется диаметром намотки. Основная изоляция реактора -- бетон, который проходит специальный технологический режим и выпускается с высокими механическими свойствами. Весь реактор после изготовления подвергается сушке, пропитке и покрытию влагостойкими лаками. Каждая колонка реактора устанавливается на опорные изоляторы 3, которые обеспечивают изоляцию от земли и между фазами. Фазы могут быть расположены вертикально а также горизонтально или ступенчато. Все металлические детали реактора выполняются из немагнитных материалов. При больших токах применяется искусственное охлаждение.

На напряжения свыше 35 кВ и для наружной установки используются масляные реакторы. Обмотки 3 из медных проводников, изолированных кабельной бумагой, укладываются на изоляционные цилиндры 4 и размещаются в баках (баке) 2, заливаемых маслом. Концы обмотки каждой фазы выводятся через проходные изоляторы 1 наружу. Масло служит и как изолирующая, и как охлаждающая среда.

· Переменное поле катушек реактора, замыкающееся через стенки бака, может привести к чрезмерному нагреву этих стенок. Для снижения нагрева стенок (и масла) необходимо ограничить замыкающийся через них магнитный поток. Для этого служат электромагнитные экраны 5 или магнитные шунты. Электромагнитный экран представляет собой медные (алюминиевые) короткозамкнутые витки, расположенные концентрично относительно обмотки реактора у стенок бака. Индуцируемые в витках токи создают в стенках бака поле, направленное встречно основному, и почти полностью его компенсируют. Нагрев стенок снижается. Магнитный шунт представляет собой пакеты листовой стали, укрепленные около стенок бака с внутренней его стороны и создающие искусственный магнитопровод с магнитным сопротивлением, значительно меньшим сопротивления стенок бака. Магнитный поток реактора замыкается по магнитному шунту, а не через стенки. Реакторы применяют для ограничения токов короткого замыкания и поддержания на сборных шинах установки значительного остаточного напряжения. Реактор, представляющий собой катушку с большим индуктивным и малым активным сопротивлением, устанавливают на отходящих кабельных линиях или в цепи понижающих трансформаторов мощных станций и подстанций. При коротком замыкании за реактором ток короткого замыкания значительно меньше, чем в нереактированной сети, поскольку общее индуктивное сопротивление в первом случае больше (за счет сопротивления реакторов). Наибольшее распространение получили бетонные реакторы с воздушным охлаждением, простые по конструкции и надежные в работе. Обмотку / реактора выполняют из гибкого многожильного изолированного провода. Витки обмотки укладывают на специальном каркасе и скрепляют бетонными колонками 2, пропитанными лаком. В трехфазных установках применяют реакторы, состоящие из трех катушек, изолированных друг от друга и от заземленных частей. Реактор характеризуется номинальными током и напряжением, а также индуктивным сопротивлением в процентах, которое соответствует процентному падению напряжения в реакторе при протекании номинального тока.

Бетонные реакторы изготовляют на номинальные напряжения 6 и 10 кВ и токи до 4000 А при индуктивном сопротивлении от 4 до 12%. На рис. 1 показан бетонный реактор РБА-6-400-4, где буквы и цифры означают: Р -- реактор, Б -- бетонный, А -- с алюминиевой обмоткой, 6 -- номинальное напряжение, кВ, 400 -- номинальный ток, А, 4 -- индуктивное сопротивление, %.

При номинальных токах /н 1500 А обычно применяют вертикальную установку фаз (катушек) реактора, при токах /н > 1500 А -- горизонтальную установку. Направление намотки витков средней фазы должно быть противоположным направлению витков верхней и нижней фаз (при вертикальной установке) и крайних фаз (при горизонтальной установке). Это необходимо для того, чтобы при протекании тока короткого замыкания катушки притягивались, а не отталкивались, как было бы при одинаковом направлении намотки витков всех катушек. При такой конструкции легче выполнить их надежное крепление.

В последние годы широко применяют сдвоенные реакторы, аналогичные по конструкции рассмотренным ранее, но отличающиеся от них выводом от середины обмотки, который подсоединяют к источнику питания, а к двум другим выводам присоединяют защищаемое оборудование. При использовании сдвоенных реакторов уменьшается их общее необходимое количество.

Значение атомной энергетики в современном мире

Атомная энергетика за последние несколько десятилетий сделала огромный шаг вперед, став одним из важнейших источников электроэнергии для многих стран. В то же время следует помнить, что за развитием данной отрасли народного хозяйства стоят огромные усилия десятков тысяч ученых, инженеров и простых рабочих, делающих все для того, чтобы «мирный атом» не превратился в реальную угрозу для миллионов людей. Настоящим стержнем любой атомной электростанции является ядерный реактор.

История создания ядерного реактора

Первое подобное устройство было построено в самый разгар второй мировой войны в США известным ученым и инженером Э. Ферми. Из-за своего необычного вида, напоминавшего стопку сложенных друг на друга графитовых блоков, этот ядерный реактор получил название «Чикагская стопка». Стоит отметить, что работало данное устройство на уране, который помещался как раз между блоками.

Создание ядерного реактора в Советском Союзе

В нашей стране ядерной тематике также уделяли повышенное внимание. Несмотря на то, что основные усилия ученых были сконцентрированы на военном применении атома, они активно использовали полученные результаты и в мирных целях. Первый ядерный реактор под кодовым обозначением Ф-1 был построен группой ученых под руководством знаменитого физика И. Курчатова в конце декабря 1946 года. Значительным его недостатком было отсутствие какой бы то ни было системы охлаждения, поэтому мощность выделяемой им энергии была крайне незначительна. В то же время советские исследователи довели до конца начатые ими работы, результатом чего стало открытие спустя всего восемь лет первой в мире электростанции на ядерном топливе в городе Обнинске.

Принцип действия реактора

Ядерный реактор представляет собой крайне сложное и опасное техническое устройство. Его принцип действия основан на том, что при распаде урана происходит выброс нескольких нейтронов, которые, в свою очередь, выбивают элементарные частицы из соседних атомов урана. В результате этой цепной реакции выделяется значительное количество энергии в виде тепла и гамма-лучей. В то же время следует учитывать тот факт, что если эту реакцию никак не контролировать, то деление атомов урана в максимально короткие сроки может привести к мощному взрыву с нежелательными последствиями.

Для того чтобы реакция протекала в строго очерченных рамках, огромное значение имеет устройство ядерного реактора. В настоящее время каждое подобное сооружение представляет собой своеобразный котел, через который протекает теплоноситель. В этом качестве обычно используется вода, однако существуют АЭС, в которых применяются жидкий графит или тяжелая вода. Современный ядерный реактор невозможно представить себе без сотен специальных кассет шестигранной формы. В них находятся тепловыделяющие элементы, по каналам которых и протекают теплоносители. Данная кассета покрыта специальным слоем, который способен отражать нейтроны и замедлять тем самым цепную реакцию

Ядерный реактор и его защита

Он имеет несколько уровней защиты. Помимо собственно корпуса, сверху его покрывает специальная теплоизоляция и биологическая защита. С инженерной точки зрения данное сооружение представляет собой мощный железобетонный бункер, двери в который закрываются максимально герметично.

Понравилась статья? Поделитесь ей